PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice.
نویسندگان
چکیده
The role of protein-tyrosine phosphatase 1B (PTP1B) in diabetes was investigated using an antisense oligonucleotide in ob/ob and db/db mice. PTP1B antisense oligonucleotide treatment normalized plasma glucose levels, postprandial glucose excursion, and HbA(1C). Hyperinsulinemia was also reduced with improved insulin sensitivity. PTP1B protein and mRNA were reduced in liver and fat with no effect in skeletal muscle. Insulin signaling proteins, insulin receptor substrate 2 and phosphatidylinositol 3 (PI3)-kinase regulatory subunit p50alpha, were increased and PI3-kinase p85alpha expression was decreased in liver and fat. These changes in protein expression correlated with increased insulin-stimulated protein kinase B phosphorylation. The expression of liver gluconeogenic enzymes, phosphoenolpyruvate carboxykinase, and fructose-1,6-bisphosphatase was also down-regulated. These findings suggest that PTP1B modulates insulin signaling in liver and fat, and that therapeutic modalities targeting PTP1B inhibition may have clinical benefit in type 2 diabetes.
منابع مشابه
Reduction of hypothalamic protein tyrosine phosphatase improves insulin and leptin resistance in diet-induced obese rats.
Protein tyrosine phosphatase (PTP1B) has been implicated in the negative regulation of insulin and leptin signaling. PTP1B knockout mice are hypersensitive to insulin and leptin and resistant to obesity when fed a high-fat diet. We investigated the role of hypothalamic PTP1B in the regulation of food intake, insulin and leptin actions and signaling in rats through selective decreases in PTP1B e...
متن کاملProtein tyrosine phosphatases: the quest for negative regulators of insulin action.
Type 2 diabetes is increasing at an alarming rate worldwide, and there has been a considerable effort in several laboratories to identify suitable targets for the design of drugs against the disease. To this end, the protein tyrosine phosphatases that attenuate insulin signaling by dephosphorylating the insulin receptor (IR) have been actively pursued. This is because inhibiting the phosphatase...
متن کاملReduction of protein tyrosine phosphatase 1B increases insulin-dependent signaling in ob/ob mice.
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin receptor (IR) signal transduction and a drug target for treatment of type 2 diabetes. Using PTP1B antisense oligonucleotides (ASOs), effects of decreased PTP1B levels on insulin signaling in diabetic ob/ob mice were examined. Insulin stimulation, prior to sacrifice, resulted in no significant activation of insulin signal...
متن کاملThe effects of Total Flavonoids from Buckwheat Flowers and Leaves on Renal Damage and PTP1B Expression in Type 2 Diabetic Rats
Clinical data showed consumption of buckwheat played a very positive role in the relief of diabetes and its complications. The purpose of this study was to explore the effects and mechanisms of the overall flavonoids from buckwheat flowers and leaves (TFBFL) on renal damage in type 2 diabetes mellitus (T2DM) rats. Seventy male Wistar rats were selected. Ten rats were randomly allocated into a n...
متن کاملProtein tyrosine phosphatase 1B reduction regulates adiposity and expression of genes involved in lipogenesis.
Protein tyrosine phosphatase 1B (PTP1B) has been implicated as a negative regulator of insulin action. Overexpression of PTP1B protein has been observed in insulin-resistant states associated with obesity. Mice lacking a functional PTP1B gene exhibit increased insulin sensitivity and are resistant to weight gain. To investigate the role of PTP1B in adipose tissue from obese animals, hyperglycem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 17 شماره
صفحات -
تاریخ انتشار 2002